Frontend and Compiler Representations of
Reducers for Clarity and Optimization

.
William S. Moses

wmoses@mit.edu
OpenCilk Meeting
' October 9, 2020

CSAIL

Reductions

Parallelizing code is often difficult as it inadvertently may create race conditions on variables.

One class of these races include variables whose results need to be accumulated for later, but
whose “current value” doesn’t need to be accessed in a parallel task

int = 0;

//Parallelizable excluding the race on total
for(int 1=0; 1i<n; 1++) {
// Don’t need value of total, just update
+= [1];
)

// Retrieve value after-the-fact
return ;

S — =~

Cilk Reducers

Cilk provides reducer hyperobjects that allow programmers to express an associative “blind
update computation” in a race-free way.

Ensures final result maintains ordering, if required (e.g. for a linked-list).
Negligible theoretical overhead, built into runtime system.

Large practical overhead, both in performance and linguistics.

void i1dentity(void* reducer, void* value) {
*((1nt*x) value) = 0;
J

volid reduce(void* reducer, voidx left, voild* right){
((1nt) left) += *((int*) right);
J

CILK_C_DECLARE_REDUCER(int) total =
CILK_C_INIT_REDUCER(int, reduce, 1identity, __cilkrts_hyperobject_noop_destroy);

REDUCER_VIEW(total) = 0;
CILK_C_REGISTER_REDUCER(total):

cilk_for(int 1=0; i<n; 1++) {
REDUCER_VIEW(total) += arrayl[il;

CILK_C_UNREGISTER_REDUCER(total);

return REDUCER_VIEW(total);

Proposed Syntax

vold 1dentity(void* reducer, int* value) {
*value = 0;

1

vold reduce(void* reducer, void* left, void* right) {
*left += *right;

}

int __attribute__((reducer(reduce, 1identity)))
total = 0;

//Parallelizable excluding the race on total
cilk_for(int 1=0; 1i<n; 1i++) {
// Don’t need value of total, just update
total += arrayl[1i];

}

// Retrieve value after-the-fact
return total;

Proposed Syntax

Consider reducer variables as modifications to the type

int __attribute__((reducer(reduce, identity, destroy, allocate, deallocate)))

Advantages:
Use of variable is equivalent to serial case
Potential type-checking

Serial Projection == removing attribute (default behavior)

Proposed Syntax

Initialization (upon creation/allocation):

Allocate reducer object

Initialize current view corresponding to default constructor (C++) or default initialization (C)
Use:

All LValue uses [e.g. references to underlying object] are replaced by the current reducer view
Destruction (when leaving scope):

Destruct all (including current) reducer views

Deallocate reducer object

Exceptions: TBD

Custom Types

struct Node{
struct Node *next, *prev;
int value;

s
typedef struct Node* List;

vold list_construct(List* 1){ *1 = NULL; }

List list_add(List 1, int x){
List m = malloc(sizeof(*m));
m->value = x;
1f(1){

1->next->prev = m;
m->next = l1->next;
1->next = m;
m->prev = 1;
} else
m->next = m->prev = m;
return m;

¥

//Reducer function
void list_merge(void* red, List* a,
List*x b){
List tmp = (*a)->next;
(*a)->next = *b;
tmp->prev = (*b)->prev;
(*b)->prev->next = tmp;
(*b)->prev = *a;

¥

List __attribute__((reducer(list_merge,
list_construct, list_erase)))
X = list_construct();

cilk_for (int i = 1; i < 10; i++)
x = list_add(x, 1);

Function Calls

volid add2(int* value) {
cilk_for(int 1=0; 1<3; 1i++) {
// This races. We passed a pointer to an integer, the current
// view. From this location 1n code there 1s no indication of
// anything special to handle races.
*value++;

}
}

int __attribute__((reducer(reduce, 1identity))) total = 0;

cilk_for(int 1=0; i<n; 1++) {
// Passes the current view, not the reducer
add2(&total);

}

Reducerof

Reducerof takes a reducer “LValue” and instead returns a pointer to the reducer object

This is how reducers should be passed to subfunction calls which themselves are parallel

vold add2(int __attribute__((reducer(reduce, identity)))* value) {
cilk_for(int 1=0; 1<3; 1i++) {
// This is safe.
*value++;

}
¥

int __attribute__((reducer(reduce, identity))) total = 0;

cilk_for(int i=0; i<n; i++) {
// Passes the current view, not the reducer
add2(reducerof (total));

}

Type Representations

Pointer to an integer reducer

l

int __attribute__((reducer(reduce, identity)))* value;

Reducer of an integer pointer

l

int*x __attribute__((reducer(reduce, 1identity))) value;

Pointer to a reducer of an integer pointer

l l

int* __attribute__((reducer(reduce, identity)))* value;

Reducer Pointers & Arrays

Heap-based reduces require a different mechanism of allocation

int __attribute__((reducer(reduce, identity)))* value =
reducer_alloc(sizeof(int), reduce, identity);

“Arrays of reducers” are not permitted

int __attribute__((reducer(reduce, identity))) valuel[3];

// Ambiguous sizing problems

// (voidx)value[1] - (void#*)value[0] == sizeof(int) [per enclosed]

// (void*)value[1] - (void*)valuel[@] == sizeof(reducer) [actual allocation]

// Both need to be true (for indexing/allocation, respectively)

“Arrays of reducers pointers” ARE permitted

int __attribute__((reducer(reduce, identity)))* valuell] = {
reducer_alloc(sizeof(int), reduce, identity), .. };

Status & Limitations

Syntax Prototype in Tapir @ LLVM version 8

Reducer functions must be compile-time constants (and not dynamic)
Stems from part of type
Possible to remove restriction if forgo type checking subtype

No reducer arrays, but instead reducer pointer arrays

Compiler Representation of Reducers

Reducers are highly unoptimized inside the compiler

cilk_for(int 1=0; i<n; 1++)
// separate lookup every iteration
REDUCER_VIEW(Y4+

return REDUCER_VIEW();

cilk_for(int 1=0; i<n; 1+=10)
for(int j=0; i<min()
// 10 x extraneous lookups
REDUCER_VIEW()++;

return REDUCER_VIEW();

Reducers act as a barrier for existing optimizations

int foo(Matrixx* - '
int foo(Matrix) 1 ReducerView reads/writes global memory
cilk_for(int i=0; i<n; i++) { which could alias MyMatrix
if ([1,01)
REDUCER_VIEW() += ->size();
}
return REDUCER_VIEW();
}
int foo(Matrixx) {
int = ->size();
cilk_for(int i=@; i<n; i++) {
if ([1,01)
REDUCER_VIEW() += ;
}
return REDUCER_VIEW();

¥

entry:
%X = alloca reducer()
br for

ReduceriIR
for:
%1dx = phi [0, entry], [%1dx.next, cont]
%ldx.next = %1dx + 1
br %1dx == 10, body, exit

body:
detach det, cont

det:
Bprev = load %X
store %x = %prev + 1
reattach cont

cont:
br for

ex1it:
sSync
%final = load %x
return %final

ReducerIR - Primitive Proof of Correctness

Detach and sync has union of read/write semantics of body

Only loads of reducer variables that can be hoisted up are those not written to inside loop
=> Legal

Only writes that can be hoisted up are those not loaded within loop => Legal
Talk offline for more proof details

Existing serial optimizations work without issue from memory semantics”

Any parallelization-modifying or serialization passes require special care

May need to use the reducer function attribute

ReducerlR - Optimization Benefits

cilk_for(int 1=0; 1i<n; 1++)
// separate lookup every iteration
REDUCER_VIEW(Y4+

return REDUCER_VIEW();

cilk_for(int 1=0; i<n; 1+=10)
for(int j=0; 1<min(: +t)
// 10 x extraneous lookups
REDUCER_VIEW(Y4+

return REDUCER_VIEW();

// further becomes += n with primitive serialization pass
cilk_for(int 1=0; i<n; 1+=10)
REDUCER_VIEW(Y+=min(:

return n;

ReducerlR - Optimization Benefits

Add example:
Reducer without optimization: 0.24s

Reducer with optimization: <0.01s

Conclusions

Better semantics are needed for reducers at both linguistic and compiler level

Provide benefits in both understanding and optimizing code

In both cases, reasonable representation derived from modification to memory behavior
L Value references in front-end
Allocation in middle-end

Prototype Implementation in Tapir @ LLVMS8

ReduceriR - Optimization Benefits (Slide incomplete)

reducer<std: :vector<int>> total = {0, 0};

cilk_for(int i=0; i<n; i++) {

auto& = REDUCER_VIEW();
for(int j=0; j< (); J++) {
[1++;
h
)
return REDUCER_VIEW();

= size(); // move out of loop since size doesn’t change
cilk_for(int 1=0; 1i<n; 1i++) {

auto& = REDUCER_VIEW();
for(int 1=0; i< ; Jtt) Ao
[] 1++;
}
}

return REDUCER_VIEW();

