
Frontend and Compiler Representations of
Reducers for Clarity and Optimization

wmoses@mit.edu
OpenCilk Meeting
October 9, 2020

William S. Moses

Reductions

• Parallelizing code is often difficult as it inadvertently may create race conditions on variables.

• One class of these races include variables whose results need to be accumulated for later, but
whose “current value” doesn’t need to be accessed in a parallel task

int total = 0;

//Parallelizable excluding the race on total
for(int i=0; i<n; i++) {
 // Don’t need value of total, just update
 total += array[i];
}

// Retrieve value after-the-fact
return total;

Cilk Reducers

• Cilk provides reducer hyperobjects that allow programmers to express an associative “blind
update computation” in a race-free way.

• Ensures final result maintains ordering, if required (e.g. for a linked-list).

• Negligible theoretical overhead, built into runtime system.

• Large practical overhead, both in performance and linguistics.

Reductionsvoid identity(void* reducer, void* value) {
 ((int) value) = 0;
}
void reduce(void* reducer, void* left, void* right){

((int) left) += *((int*) right);
}

CILK_C_DECLARE_REDUCER(int) total =
 CILK_C_INIT_REDUCER(int, reduce, identity, __cilkrts_hyperobject_noop_destroy);

REDUCER_VIEW(total) = 0;

CILK_C_REGISTER_REDUCER(total);

cilk_for(int i=0; i<n; i++) {
 REDUCER_VIEW(total) += array[i];

CILK_C_UNREGISTER_REDUCER(total);

return REDUCER_VIEW(total);

Proposed Syntax
void identity(void* reducer, int* value) {
 *value = 0;
}
void reduce(void* reducer, void* left, void* right) {

*left += *right;
}

int __attribute__((reducer(reduce, identity)))
 total = 0;

//Parallelizable excluding the race on total
cilk_for(int i=0; i<n; i++) {
 // Don’t need value of total, just update
 total += array[i];
}

// Retrieve value after-the-fact
return total;

Proposed Syntax

int __attribute__((reducer(reduce, identity, destroy, allocate, deallocate)))

• Consider reducer variables as modifications to the type

Advantages:

• Use of variable is equivalent to serial case

• Potential type-checking

• Serial Projection == removing attribute (default behavior)

Proposed Syntax
• Initialization (upon creation/allocation):

• Allocate reducer object

• Initialize current view corresponding to default constructor (C++) or default initialization (C)

• Use:

• All LValue uses [e.g. references to underlying object] are replaced by the current reducer view

• Destruction (when leaving scope):

• Destruct all (including current) reducer views

• Deallocate reducer object

• Exceptions: TBD

Custom Types
struct Node{

struct Node *next, *prev;
int value;

};
typedef struct Node* List;

void list_construct(List* l){ *l = NULL; }

List list_add(List l, int x){
List m = malloc(sizeof(*m));
m->value = x;
if(l){

l->next->prev = m;
m->next = l->next;
l->next = m;
m->prev = l;

} else
m->next = m->prev = m;

return m;
}

//Reducer function
void list_merge(void* red, List* a,
List* b){

List tmp = (*a)->next;
(*a)->next = *b;
tmp->prev = (*b)->prev;
(*b)->prev->next = tmp;
(*b)->prev = *a;

}

List __attribute__((reducer(list_merge,
list_construct, list_erase)))
 x = list_construct();

cilk_for (int i = 1; i < 10; i++)
 x = list_add(x, i);

Function Calls

void add2(int* value) {
 cilk_for(int i=0; i<3; i++) {
 // This races. We passed a pointer to an integer, the current
 // view. From this location in code there is no indication of
 // anything special to handle races.
 *value++;
 }
}

int __attribute__((reducer(reduce, identity))) total = 0;

cilk_for(int i=0; i<n; i++) {
 // Passes the current view, not the reducer
 add2(&total);
}

Reducerof

void add2(int __attribute__((reducer(reduce, identity)))* value) {
 cilk_for(int i=0; i<3; i++) {
 // This is safe.
 *value++;
 }
}

int __attribute__((reducer(reduce, identity))) total = 0;

cilk_for(int i=0; i<n; i++) {
 // Passes the current view, not the reducer
 add2(reducerof(total));
}

• Reducerof takes a reducer “LValue” and instead returns a pointer to the reducer object

• This is how reducers should be passed to subfunction calls which themselves are parallel

Type Representations

int __attribute__((reducer(reduce, identity)))* value;

• Pointer to an integer reducer

• Reducer of an integer pointer

• Pointer to a reducer of an integer pointer

int* __attribute__((reducer(reduce, identity))) value;

int* __attribute__((reducer(reduce, identity)))* value;

Reducer Pointers & Arrays

int __attribute__((reducer(reduce, identity)))* value =
 reducer_alloc(sizeof(int), reduce, identity);

• Heap-based reduces require a different mechanism of allocation

• “Arrays of reducers” are not permitted

• “Arrays of reducers pointers” ARE permitted

int __attribute__((reducer(reduce, identity)))* value[1] = {
 reducer_alloc(sizeof(int), reduce, identity), … };

int __attribute__((reducer(reduce, identity))) value[3];
// Ambiguous sizing problems
// (void*)value[1] - (void*)value[0] == sizeof(int) [per enclosed]
// (void*)value[1] - (void*)value[0] == sizeof(reducer) [actual allocation]
// Both need to be true (for indexing/allocation, respectively)

Status & Limitations

• Syntax Prototype in Tapir @ LLVM version 8

• Reducer functions must be compile-time constants (and not dynamic)

• Stems from part of type

• Possible to remove restriction if forgo type checking subtype

• No reducer arrays, but instead reducer pointer arrays

Compiler Representation of Reducers

• Reducers are highly unoptimized inside the compiler

cilk_for(int i=0; i<n; i++)
 // separate lookup every iteration
 REDUCER_VIEW(total)++;

return REDUCER_VIEW(total);

cilk_for(int i=0; i<n; i+=10)
 for(int j=0; i<min(i+10,n); j++)
 // 10 x extraneous lookups
 REDUCER_VIEW(total)++;

return REDUCER_VIEW(total);

Reducers act as a barrier for existing optimizations

• Reducers are highly unoptimized inside the compilerint foo(Matrix* MyMatrix) {
 total = …;
 cilk_for(int i=0; i<n; i++) {
 if (MyMatrix[i,0])
 REDUCER_VIEW(total) += MyMatrix->size();
 }
 return REDUCER_VIEW(total);
}

int foo(Matrix* MyMatrix) {
 total = …;
 int licm = MyMatrix->size();
 cilk_for(int i=0; i<n; i++) {
 if (MyMatrix[i,0])
 REDUCER_VIEW(total) += licm;
 }
 return REDUCER_VIEW(total);
}

ReducerView reads/writes global memory
which could alias MyMatrix

ReducerIR

entry:
 %x = alloca reducer()
 br for

for:
 %idx = phi [0, entry], [%idx.next, cont]
 %idx.next = %idx + 1
 br %idx == 10, body, exit

body:
 detach det, cont

det:
 %prev = load %x
 store %x = %prev + 1
 reattach cont

cont:
 br for

exit:
 sync
 %final = load %x
 return %final

ReducerIR - Primitive Proof of Correctness

• Detach and sync has union of read/write semantics of body

• Only loads of reducer variables that can be hoisted up are those not written to inside loop
=> Legal

• Only writes that can be hoisted up are those not loaded within loop => Legal

• Talk offline for more proof details

• Existing serial optimizations work without issue from memory semantics^

• Any parallelization-modifying or serialization passes require special care

• May need to use the reducer function attribute

ReducerIR - Optimization Benefits

cilk_for(int i=0; i<n; i++)
 // separate lookup every iteration
 REDUCER_VIEW(total)++;

return REDUCER_VIEW(total);

cilk_for(int i=0; i<n; i+=10)
 for(int j=0; i<min(i+10,n); j++)
 // 10 x extraneous lookups
 REDUCER_VIEW(total)++;

return REDUCER_VIEW(total);

// further becomes += n with primitive serialization pass
cilk_for(int i=0; i<n; i+=10)
 REDUCER_VIEW(total)+=min(i+10,n);

return n;

ReducerIR - Optimization Benefits

• Add example:

• Reducer without optimization: 0.24s

• Reducer with optimization: <0.01s

Conclusions

• Better semantics are needed for reducers at both linguistic and compiler level

• Provide benefits in both understanding and optimizing code

• In both cases, reasonable representation derived from modification to memory behavior

• LValue references in front-end

• Allocation in middle-end

• Prototype Implementation in Tapir @ LLVM8

ReducerIR - Optimization Benefits (Slide incomplete)

reducer<std::vector<int>> total = {0, 0};

cilk_for(int i=0; i<n; i++) {
 auto& view = REDUCER_VIEW(total);
 for(int j=0; j<total(); j++) {
 view[j]++;
 }
}
return REDUCER_VIEW(total);

size = total.size(); // move out of loop since size doesn’t change
cilk_for(int i=0; i<n; i++) {
 auto& view = REDUCER_VIEW(total);
 for(int j=0; j<size; j++) {
 view[j]++;
 }
}
return REDUCER_VIEW(total);

